
Resit Exam — Analysis (WBMA012-05)

Thursday 11 April 2024, 8.30h–10.30h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (5 + 10 = 15 points)

Assume that A ⊆ R is nonempty (but not necessarily bounded) and define the function

f : R→ R, f(x) = sup{2− |x− a| : a ∈ A}.

(a) Explain why the supremum above exists for all x ∈ R.

(b) Let A = (−1,∞) and prove that f(−3) = 0.

Problem 2 (8 + 7 = 15 points)

Consider the following sequence:

xn+1 =
√

12 + xn with x1 = 0.

(a) Show that xn+1 > xn and xn < 4 for all n ∈ N.

(b) Prove that the sequence (xn) converges and compute limxn.

Problem 3 (5 + 5 + 5 = 15 points)

Consider the set A =

{
1

p
− 1

q
: p, q ∈ N

}
.

(a) Find a limit point of A which is contained in A.

(b) Find a limit point of A which is not contained in A.

(c) Is the set A compact?

Please turn over for problems 4, 5 and 6!
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Problem 4 (15 points)

Consider the following function:

f : R→ R, f(x) =
√

3 + 4x2.

Use the Mean Value Theorem to prove that f is uniformly continuous on R.

Problem 5 (3 + 6 + 6 = 15 points)

Assume f : R→ R is continuous, and consider the functions

fn : R→ R, fn(x) = f(x+ 1/n).

Prove the following statements:

(a) The sequence (fn) converges pointwise to f .

(b) If f(x) = |x|, then (fn) converges uniformly on R.

(c) If f(x) = x2, then (fn) does not converge uniformly on R.

Problem 6 (8 + 7 = 15 points)

Consider the function f : [0, 1]→ R given by

f(x) =


−1 if x = 0,

1 if 0 < x < 1

2 if x = 1.

(a) Let P = {0 = x0 < x1 < · · · < xn = 1} be any partition of [0, 1]. Show that

U(f, P )− L(f, P ) = 1 + 2x1 − xn−1.

(b) Use part (a) to prove that f is integrable on [0, 1].

End of test (90 points)
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Solution of problem 1 (5 + 10 = 15 points)

(a) For a fixed x ∈ R we define the set Bx = {2− |x− a| : a ∈ A}. Since A is nonempty,
so is the set Bx.
(1 point)

Note that 2− |x− a| ≤ 2 for all a ∈ A, which implies that u = 2 is an upper bound
for the set Bx.
(2 points)

The Axiom of Completeness states that every nonempty set that has an upper bound
also has a least upper bound.
(2 points)

(b) Consider the set B = {2− |−3− a| : a ∈ A}. We first claim that u = 0 is an upper
bound for B. This can be done in (at least) two different ways.

Method 1. We have the following implications

a ∈ A = (−1,∞) ⇒ a > −1

⇒ −a < 1

⇒ −3− a < −2

⇒ |−3− a| > 2

⇒ 2− |−3− a| < 0,

which shows the claim.
(4 points)

Method 2. By sketching a picture of the real line, we see that the distance between
the point x = −3 and a point a ∈ A is larger than 2. In other words: |−3 − a| > 2,
and thus 2− |−3− a| < 0, for all a ∈ A.
(4 points)

In order to prove that supB = 0, we can again follow (at least) two different ap-
proaches.

Method 1. Let u ∈ R be any upper bound for B, so that

2− |−3− a| ≤ u for all a ∈ A.

(2 points)

Taking the sequence an = −1 + 1/n ∈ A gives

2− |−3− (−1 + 1/n)| = 2− |−2− 1/n| = 1/n ≤ u for all n ∈ N.

(2 points)

By taking n → ∞ the Order Limit Theorem implies that 0 ≤ u. By definition, it
follows that supB = 0.
(2 points)

Method 2. Let ε > 0 be arbitrary and take a = −1 + ε/2 ∈ A.
(2 points)

A straightforward computation shows that

2− |−3− a| = −ε/2 > 0− ε.
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(2 points)

This means that for all ε > 0 we have shown that there exists a b ∈ B (namely,
b = 2− |−3− a| with a = −1 + ε/2 ∈ A) such that 0− ε < b. By characterization of
supremum we have that supB = 0, as desired.
(2 points)
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Solution of problem 2 (8 + 7 = 15 points)

(a) Clearly, we have x2 =
√

12 + x1 =
√

12 > 0 = x1.
(1 point)

Assume that xn+1 > xn for some n ∈ N. Then 12 + xn+1 > 12 + xn. Since the square
root is an increasing function, we obtain xn+2 =

√
12 + xn+1 >

√
12 + xn = xn+1. By

induction, it follows that xn < 4 for all n ∈ N.
(3 points)

Clearly, we have x1 < 4.
(1 point)

Assume that xn < 4 for some n ∈ N. This gives 12 + xn < 16. Since the square root
is an increasing function, we obtain xn+1 =

√
12 + xn < 4. By induction, it follows

that xn < 4 for all n ∈ N.
(3 points)

(b) Since (xn) is an increasing sequence which is bounded from above, it follows by the
Monotone Convergence Theorem that lim xn exists.
(2 points)

Write x = limxn. Since the square root is continuous it follows that x =
√

12 + x,
which implies that x2 − x− 12 = 0.
(2 points)

The solutions of this quadratic equation are x = 4 and x = −3.
(2 points)

Since x1 = 0 and the sequence (xn) increases, we can rule out x = −3. We conclude
that limxn = 4.
(1 point)
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Solution of problem 3 (5 + 5 + 5 = 15 points)

(a) Note that with p = q it follows that 0 ∈ A.
(1 point)

Next we claim that x = 0 is indeed a limit point of A. To that end, consider the
sequence xn = 1/(2n). With p = n and q = 2n it follows that xn ∈ A for all n ∈ N.
Clearly, xn 6= 0 for all n ∈ N and lim xn = 0. This shows that x = 0 is indeed a limit
point of A.
(4 points)

(b) We claim that x = 1 is a limit point of A. Indeed, for p = 1 and q = n it follows that
xn = 1 − 1/n ∈ A for all n ∈ N. Clearly, xn 6= 1 for all n ∈ N and lim xn = 1. This
shows that x = 1 is indeed a limit point of A.
(4 points)

However, 1 /∈ A since
1

p
− 1

q
≤ 1− 1

q
< 1

for all p, q ∈ N.
(1 point)

(c) From part (b) it follows that A does not contain all its limit points. Therefore, A is
not closed.
(2 points)

A set A ⊆ R is compact if and only if A is both closed and bounded. Since the given
set A is not closed, it cannot be compact.
(3 points)
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Solution of problem 4 (15 points)

Pick x, y ∈ R such that x 6= y. By the Mean Value Theorem there exists a point c between
x and y such that

f(x)− f(y) = f ′(c)(x− y) =
4c√

3 + 4c2
(x− y).

(4 points)

Since 4c2 < 3 + 4c2 it follows that 2|c| <
√

3 + 4c2 and thus∣∣∣∣ 4c√
3 + 4c2

∣∣∣∣ < 2.

(4 points)

Therefore, we obtain

|f(x)− f(y)| =
∣∣∣∣ 4c√

3 + 4c2

∣∣∣∣ |x− y| < 2|x− y|.

By replacing the “<”-sign by a “≤”-sign, the inequality is true for all x, y ∈ R.
(2 points)

Let ε > 0 be arbitrary and take δ = ε/2. Then we have

|x− y| < δ ⇒ |f(x)− f(y)| ≤ 2|x− y| < 2δ = ε for all x, y ∈ R,

which shows that f is uniformly continuous on R.
(5 points)
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Solution of problem 5 (3 + 6 + 6 = 15 points)

(a) Method 1. For fixed x ∈ R consider the sequence xn = x+ 1/n. Since limxn = x the
continuity of f gives

lim fn(x) = lim f(x+ 1/n) = lim f(xn) = f(x).

(3 points)

Method 2. Fix a point x ∈ R. The function f is continuous at x so for all ε > 0 there
exists δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε.

By the Archimedean Property there exists N ∈ N such that N > 1/δ. This gives

n ≥ N ⇒
∣∣∣∣x− (x+

1

n

)∣∣∣∣ =
1

n
≤ 1

N
< δ ⇒ |f(x)− f(x+ 1/n)| < ε.

In summary, we have for all ε > 0 the existence of N ∈ N such that

n ≥ N ⇒ |f(x)− fn(x)| < ε,

which means that fn converges pointwise to f . (Note that δ, and thus N , depends
on the chosen point x, but this is not made explicit in the notation.)
(3 points)

(b) Let x ∈ R be arbitrary. The reverse triangle inequality gives∣∣fn(x)− f(x)
∣∣ =

∣∣f(x+ 1/n)− f(x)
∣∣

=
∣∣ |x+ 1/n| − |x|

∣∣
≤
∣∣x+ 1/n− x

∣∣
= 1/n.

(3 points)

There are (at least) two arguments to show that fn → f uniformlyon R.

Method 1. From the above inequality we obtain

sup
x∈R
|fn(x)− f(x)| ≤ 1

n
.

Therefore, it follows that

lim

(
sup
x∈R
|fn(x)− f(x)|

)
= 0.

A theorem proven in the lectures implies that fn → f uniformly on R.
(3 points)

Method 2. Let ε > 0 be arbitrary. By the Archimedean Property there exists N ∈ N
such that 1/N < ε. This gives

n ≥ N ⇒ |f(x)− fn(x)| ≤ 1

n
≤ 1

N
< ε for all x ∈ R,

which is the definition of fn → f uniformly on R (the N only depends on ε but not
on the point x).
(3 points)
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(c) If f(x) = x2, then we have

|fn(x)− f(x)| =
∣∣∣∣2xn +

1

n2

∣∣∣∣.
(3 points)

There are (at least) two different arguments to show that the convergence is not
uniform on R.

Method 1. Note that for fixed n the function |fn(x)− f(x)| is unbounded on R, so

sup
x∈R
|fn(x)− f(x)| =∞.

In particular, it is not true that

lim

(
sup
x∈R
|fn(x)− f(x)|

)
= 0,

which means that the convergence is not uniform on R.
(3 points)

Method 2. It suffices to show that the convergence is not uniform on [0,∞). Indeed,
if we want to have

n ≥ N ⇒ |fn(x)− f(x)| = 2x

n
+

1

n2
< ε,

then it is clear that for fixed ε this implication cannot be satisfied for all x ≥ 0.
Indeed, if the inequality holds for some x > 0, then by repeatedly doubling x we
cannot maintain the inequality without also increasing n (and thus N). Therefore,
the N must be dependent on x as well.
(3 points)
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Solution of problem 6 (8 + 7 = 15 points)

(a) The upper sum is defined by

U(f, P ) =
n∑

k=1

Mk(xk − xk−1) where Mk = sup{f(x) : x ∈ [xk−1, xk]}.

The lower sum has an analogous expression which is obtained by replacing the su-
premum by the infimum. For the given function we have

U(f, P ) = (x1 − x0) + (x2 − x1) + · · ·+ (xn−1 − xn−2) + 2(xn − xn−1),
L(f, P ) = −(x1 − x0) + (x2 − x1) + · · ·+ (xn−1 − xn−2) + (xn − xn−1).

(4 points)

Subtracting these expressions gives

U(f, P )− L(f, P ) = 2(x1 − x0) + (xn − xn−1).

(2 points)

Using that x0 = 0 and xn = 1 gives

U(f, P )− L(f, P ) = 2x1 + (1− xn−1) = 1 + 2x1 − xn−1.

(2 points)

(b) Method 1. Take an equispaced partition P so that xk = k/n for all k = 0, . . . , n. The
expression obtained in part (a) gives

U(f, P )− L(f, P ) = 1 +
2

n
− n− 1

n
=

1

n
.

(4 points)

Let ε > 0 be arbitrary. By the Archimedean Principle there exists n ∈ N such that
1/n < ε, which gives

U(f, P )− L(f, P ) < ε,

which shows that f is integrable on [0, 1].
(3 points)

Method 2. Actually, we can also take a partition P with n = 3 intervals. For a given
ε > 0 we simply take x1 = ε/4 and x2 = 1− ε/2. The expression obtained in part (a)
gives

U(f, P )− L(f, P ) = 1 +
ε

2
− 1 +

ε

2
= ε.

(7 points)

In all fairness, the argument of method 2 does not work if ε > 2. In this case, we can
just take any points 0 < x1 < x2 < 1 since

U(f, P )− L(f, P ) = 2x1 + (1− x2)
= 1 + 2x1 − x2
< 1 + 2x2 − x2
= 1− x2 < 2 < ε.

(Not taken into account in grading)
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